16 research outputs found

    A Predictive Model of the Oxygen and Heme Regulatory Network in Yeast

    Get PDF
    Deciphering gene regulatory mechanisms through the analysis of high-throughput expression data is a challenging computational problem. Previous computational studies have used large expression datasets in order to resolve fine patterns of coexpression, producing clusters or modules of potentially coregulated genes. These methods typically examine promoter sequence information, such as DNA motifs or transcription factor occupancy data, in a separate step after clustering. We needed an alternative and more integrative approach to study the oxygen regulatory network in Saccharomyces cerevisiae using a small dataset of perturbation experiments. Mechanisms of oxygen sensing and regulation underlie many physiological and pathological processes, and only a handful of oxygen regulators have been identified in previous studies. We used a new machine learning algorithm called MEDUSA to uncover detailed information about the oxygen regulatory network using genome-wide expression changes in response to perturbations in the levels of oxygen, heme, Hap1, and Co2+. MEDUSA integrates mRNA expression, promoter sequence, and ChIP-chip occupancy data to learn a model that accurately predicts the differential expression of target genes in held-out data. We used a novel margin-based score to extract significant condition-specific regulators and assemble a global map of the oxygen sensing and regulatory network. This network includes both known oxygen and heme regulators, such as Hap1, Mga2, Hap4, and Upc2, as well as many new candidate regulators. MEDUSA also identified many DNA motifs that are consistent with previous experimentally identified transcription factor binding sites. Because MEDUSA's regulatory program associates regulators to target genes through their promoter sequences, we directly tested the predicted regulators for OLE1, a gene specifically induced under hypoxia, by experimental analysis of the activity of its promoter. In each case, deletion of the candidate regulator resulted in the predicted effect on promoter activity, confirming that several novel regulators identified by MEDUSA are indeed involved in oxygen regulation. MEDUSA can reveal important information from a small dataset and generate testable hypotheses for further experimental analysis. Supplemental data are included

    Metabolomic Comparison of Saccharomyces cerevisiae and the Cryotolerant Species S. bayanus var. uvarum and S. kudriavzevii during Wine Fermentation at Low Temperature

    Get PDF
    Temperature is one of the most important parameters affecting the length and rate of alcoholic fermentation and final wine quality. Wine produced at low temperature is often considered to have improved sensory qualities. However, there are certain drawbacks to low temperature fermentations such as reduced growth rate, long lag phase, and sluggish or stuck fermentations. To investigate the effects of temperature on commercial wine yeast, we compared its metabolome growing at 12°C and 28°C in a synthetic must. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae. This is the case of the cryotolerant yeasts Saccharomyces bayanus var. uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the metabolome of these species growing at 12°C, which we compared with the metabolome of S. cerevisiae (not well adapted at low temperature) at the same temperature. Our results show that the main differences between the metabolic profiling of S. cerevisiae growing at 12°C and 28°C were observed in lipid metabolism and redox homeostasis. Moreover, the global metabolic comparison among the three species revealed that the main differences between the two cryotolerant species and S. cerevisiae were in carbohydrate metabolism, mainly fructose metabolism. However, these two species have developed different strategies for cold resistance. S. bayanus var. uvarum presented elevated shikimate pathway activity, while S. kudriavzevii displayed increased NAD+ synthesis. © 2013 López-Malo et al.This work has been financially supported by the grants AGL2010-22001-C02-01 and AGL2009-12673-C02-01, from the Spanish government, awarded to JMG and AQ, respectively; PROMETEO/2009/019 and ACOMP/2012/014 from Generalitat Valenciana, awarded to AQ and JMG, respectively. MLM also wishes to thank the Spanish government for her FPI grant.Peer Reviewe

    Current Status and Perspectives of the OECD/NEA sub-group on Uncertainty Analysis in Modelling (UAM) for Design, Operation and Safety Analysis of SFRs (SFR-UAM)

    Get PDF
    International audienceAn OECD/NEA sub-group on Uncertainty Analysis in Modelling (UAM) for Design, Operation and Safety Analysis of Sodium-cooled Fast Reactors (SFR-UAM) has been formed under the NSC/WPRS/EGUAM to check the use of best-estimate codes and data. This work comes from the desire to design reactors with improved safety performance while preserving a sustainable source of energy at a rather low cost. Two SFR cores are being studied a large 3600MWth oxide core and a medium 1000MWth metallic core. In order to assess tools being used for studying these cores, various sub-exercises have been set up for what concerns neutronics with cell, sub-assembly, super-cell and core benchmarks under steady state conditions either at BOL conditions or at EOEC. A sub-assembly depletion benchmark is being set up before going into full core calculations with depletion. Since the objective is to define the grace period or the margin to melting available in the different accident scenarios and this within uncertainty margins, uncertainties of different origins (methods, neutronics, thermal-hydraulic, fuel behavior) once identified and evaluated will be propagated through. In order to ensure validity to these exercises, the sub-group incorporates some experimental validations on neutronics, thermal hydraulics, fuels and systems. This will be done with experiments from IRPhE et ICSBEP, SEFOR, THORS and the SUPER-PHENIX start-up transient programme
    corecore